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Scheme I 

NCH2 H 

2 + 1 

i.e., having a disrotatory "joining" followed by a con-
rotatory closure from either 5 or 6 {e.g., 4a -*• 5b -»• 6b 
-*• 3), will not change the stereochemical predictions. 
However, the conrotatory "joining" shown in Scheme I 
may follow if the transition state 4 is stabilized by the 
equivalent of spiroconjugation.14 While such interac­
tion probably is very small in 5, it could be significant 
in 4 if twisting is much farther advanced than bending. 
Disrotatory closure of 6 is predicted from orbital sym­
metry arguments if one assumes a singlet state for this 
species. 

Granting that the success of the Woodward-Hoff­
mann predictions argues strongly for a concerted reac­
tion in this case, we suggest that in general one must 

(14) (a) H. E. Simmons and T. Fukunaga, / . Am. Chem. Soc, 89, 
5208 (1967); (b) R. Hoffmann, A. Imamura, and G. D. Zeiss, ibid., 89, 
5215 (1967). 

consider the possibility that intermediates both appear 
and react stereospecifically. 

(15) (a) National Institutes of Health Predoctoral Fellow, 1964-1967; 
(b) National Science Foundation Trainee, 1967-1968. 
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Nuclear Magnetic Resonance of Phosphorus Compounds. 
V. Signs of Geminal Coupling Constants between 
Protons on Phosphorus1 

Sir: 

We wish to report measurements of the magnitudes 
and multiple resonance determinations of the signs of 
the geminal nmr coupling constants, / H P H . between pro­
tons bonded to phosphorus of different coordinations.2 

These results are important in light of the observed 
changes of the corresponding coupling between protons 
on carbon3 and a recent approximate theoretical treat­
ment of the latter couplings.4 

Our results are presented in Table I.6 The magni-

Table I1 Signs and Magnitudes of Geminal Proton-Proton 
Coupling Constants in Some Phosphorus Compounds 

Compound 

CH3PHD 
PH2D 
C8H5PHD 
CF3PHD 
PH3D+ 
(CHs)2PHD+ 

O2PHD-

^HPD 0 

-2 .04 
-2 .03 
-2 .00 
-1 .90 
<|0.2| 
+0.51 
+ 5.35 

/HPH"'6 

-13 .4 
-13 .3 
-13.1 
-12.5 
<|1.3| 
+3.3 
+35.1 

H-P-H bond 
angle, deg 

93.4C 

93.3<* 

97.4 ± 1.5« 
109.47/ 

92» 

" In Hz. b Calculated from / H F D taking 7H/TD = 6.55. c E. L. 
Breig and C. C. Liu, / . Chem. Phys., 35, 2139 (1961). dC. C. 
Loomis and M. W. P. Standberg, Phys. Rev., 81, 798 (1951). • I. 
Y. M. Wang, C. O. Britt, A. H. Cowley, and J. E. Boggs, J. Chem. 
/»^. ,48,812(1968) . /Assumed. ° Reference 11. 

tudes of the /HPD'S (and hence /HPH'S) were obtained 
from the 1H spectra. The signs of 7 H PD relative t o / P D 

and JPH were established by a variety of multiple reso­
nance experiments. These included selective irradia­
tion of single lines that gave rise to Overhauser effects6 

and/or splittings7 and indor experiments where either 
a 1H or 31P line was continuously observed while an ir­
radiating frequency was swept through an appropriate 
portion of the rest of the spectrum.8'9 

(1) Previous paper in this series: S. L. Manatt, D. D. Elleman, 
A. H. Cowley, and A. B. Burg, J. Am. Chem. Soc, 89,4544 (1967). 

(2) Previous data on the sign of /HPH were from the analysis of the 
biphosphine spectrum which could only be accommodated if /HPH 
is the same sign as /pp which is a different sign from the /HPPH'S [R. M. 
Lynden-Bell, Trans. Faraday Soc, 57, 888 (1961)], and from preliminary 
analysis of the spectra of chloromethylphosphine and ethylphosphine 
whose spectra are best fitted if /HPH and JHCB are both the same sign 
and negative (unpublished work of S. L. Manatt). 

(3) See A. A. Bothner-By, Advan. Magnetic Resonance, 1, 149 (1965); 
R. C. Cookson, T. A. Grabb, J. J. Frankel, and J. Hudes, Tetrahedron, 
Suppl., 7, 355 (1966). 

(4) J. A. Pople and A. A. Bothner-By, J. Chem. Phys., 42,1339 (1965). 
(5) We are grateful to Dr. W. D. White for the synthesis of C5H5PHD. 
(6) K. Kuhlman and J. D. Baldeschwieler, / . Am. Chem. Soc, 85, 

1010(1963). 
(7) R. Freeman and W. A. Anderson, / . Chem. Phys., 37,2053 (1962). 

Communications to the Editor 



5920 

'i r 

•* * ' + 2 

s l ' * K-1 +i 

Figure 1. Molecular orbitals and excitations for the H - X - H 
system; sign of each contribution to contact term is given at the 
left of the corresponding excitation. 

The most obvious features of the results in Table I is 
that / H P H is negative for the tricoordinated phosphorus 
compounds and approximately zero or positive for the 
tetracoordinate species.10 In the case of PH3D+, it was 
impossible to resolve the H-P-D coupling, and hence 
the value in Table I represents an upper limit for / H P D . 
In the phosphorus-31 spectrum of a mixture of phos-
phonium and deuterated phosphonium cations all the 
species PH4

+, PH3D+, PH2D2
+, PHD3

+, and PD4
+ give 

rise to their expected multiplets. Thus, we conclude 
that the unresolvable 7 H PD is not the result of an ex­
change process. 

Based on available structural data, it appears that 
opening out of the geminal H-P-H bond angle leads to 
an algebraic increase in the proton-proton coupling. 
In this sense /HPH resembles J-HCH where increasing the 
H-C-H angle from tetrahedral to trigonal increases 
/ H C H from —12.5 to +2.4 Hz.3 It is also apparent that 
the variation of the H-P-H angle is not the only signifi­
cant factor because the anion O2PHD - has the largest 
^HPH, yet the H-P-H angle is only about 92 ° . u At this 
point it is not clear whether the formal negative charge 
or the electronegative substituents contribute the most 
to increasing / H P H in this anion. In the -CH2- frag­
ment neighboring oxygen increases /HCH algebraically 
by both inductive and lone-pair conjugative effects.3'4 

Our results for this series of molecules may also be 
understood qualitatively in terms of the Pople and 
Bothner-By molecular orbital treatment of geminal 
H-X-H couplings.4 In this model two bonding (\pi and 
1̂ 2) and two antibonding (^3 and ^4) molecular orbitals 
are constructed from two H(Is) atomic orbitals and two 
sp hybrid orbitals centered on atom X. The excitations 
"Ai -»• ^i (see Figure 1) and ^2 -»• ^3 lead to positive con­
tributions to the contact term while the excitations \pi -*• 
\ps and i/'a -+• ^4 lead to negative contributions. The 
single most dominant term is ^2 -*• ypa because the ex­
citation energies appear in the denominator of the con-

(8) E. B. Baker, J. Chem. Phys., 37, 911 (1962). 
(9) Performed with a modified HA-IOO spectrometer whose 100- and 

40.4-MHz frequencies were derived from the same source; details to be 
published. 

(10) Our results are based on the assumption that / P H and JPD are 
always positive for both tri- and tetracoordinate phosphorus. This 
assumption has been discussed previously in detail [S. L. Manatt, G. L. 
Juvinall, R. I. Wagner, and D. D. Elleman, J. Am. Chem. Soc, 88, 
2689 (1966)]; more recently it has been confirmed by double resonance 
studies on compounds with various coordination of phosphorus [W. 
McFarlane,/. Chem. Soc, A, 1148 (1967); S. L. Manatt, M. T. Bow­
ers, and H. Goldwhite, unpublished work. 

(11) In ammonium hypophosphite the H-P-H angle is 92°: W. H. 
Zachariasen and R. C. L. Mooney, / . Chem. Phys., 2, 34 (1934); M. 
L. Huggins, Phys. Rev., 21, 719 (1923). 

tact coupling expression. As nitrogen is replaced by 
phosphorus in this treatment, it would be anticipated 
that the separation between the bonding and antibond­
ing levels would decrease. Thus, the positive contribu­
tion from the ^2 -*• ^3 excitation should become more 
important, making / H X H more positive for phosphorus 
compounds than for nitrogen compounds.12 This may 
explain why / H P H is very small in the phosphonium 
cation [or slightly positive in (CH 3)2PH2

+] while 7 H NH is 
negative in ammonium cation.13 A similar variation 
in the energies of ^2 and ^3 may explain the sign inver­
sion on changing the coordination number of phos­
phorus from three to four. 

(12) Similar arguments have been presented by H. Dreeschamp and 
C. Schumann, Chem. Phys. Letters, 1, 555 (1968), to explain why the 
•/HXH couplings algebraically increase in the order X = Sn > Ge > 
Si > C. 

(13) The sign of/HND in deuterated ammonium ions has been deter­
mined to be opposite to the 7ND and />JH couplings by W. McFarlane 
and R. R. Dean, J. Chem. Soc, A, 1535 (1968). There is good reason 
to believe that ^ND and ^NH are always positive; see J. A. Pople and 
D. P. Santry, MoI. Phys., 8, 1 (1964). 

(14) NRC Resident Research Associate, Jet Propulsion Laboratory, 
1967-1968. 

(15) Supported under Contract No. NAS 7-100 by the National 
Aeronautics and Space Administration. 

(16) Supported by the Robert A. Welch Foundation and Jet Pro­
pulsion Laboratory Director's Discretionary Fund. 
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Isolation of ,u4-Oxo-penta-,u-acetato-ju-trichIoroacetato-
tetraberyllium, Be4O(CH3CO2)S(CCl3CO2) 

Sir: 

We have been unable to find an adequately docu­
mented report of the isolation of a pure metal mixed 
carboxylate. Perhaps this is because in many instances 
rapid ligand exchange would prevent the isolation of a 
compound containing a given mixed carboxylate ratio. 
In instances where ligand exchange would be slow, sim­
ilar solubilities of compounds with varying ratios of dif­
ferent carboxylate groups would militate against the 
isolation of one member in a series. A number of at­
tempts to prepare mixed basic beryllium carboxylates 
have been made. Tanatar and Kurowski1 claimed to 
have prepared specific mixed carboxylates, e.g., Be4O-
(CH3C02)3(C2HsC02)3. However, Marvel2 and Hardt3 

have demonstrated that the "compounds" were actually 
mixtures of intramolecular mixed carboxylate com­
pounds of the general formula Be4(RCOO1(R

 1COa)6-Z 
where 0 < x < 6. A claim for the existence of acetate-
monochloroacetate mixed carboxylates has been made 
by other workers4 based on phase diagrams. For rea­
sons presented below we do not believe pure compounds 
were present in the latter study. 

(1) S. Tanatar and E. Kurowski, J. Russ. Phys.-Chem. Soc, 39, 936 
(1907); Chem. Zentr., 791 (1908). 

(2) C. S. Marvel and M. M. Martin, / . Am. Chem. Soc, 80, 619 
(1958). 

(3) H. Hardt, Z. Anorg. Allgem. Chem., 314, 210(1962). 
(4) A. V. Novoselenova and K. N. Semenenko, Zh. Neorg. Khim., 1, 

2344(1956). 
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